Math 524 Exam 5 Solutions

1. Suppose that A, B are square, diagonalizable matrices satisfying $A B=B A+I$. Without using Thm. 4.10, prove that they are not simultaneously diagonalizable. (Note: Thm 4.10 says that A, B commute if and only if they are simultaneously diagonalizable).

Suppose otherwise. Then there is some invertible P such that $P A P^{-1}=D_{1}, P B P^{-1}=$ D_{2}, for some diagonal matrices D_{1}, D_{2}. We multiply by P on the left, and P^{-1} on the right, to get: $P A P^{-1} P B P^{-1}=P B P^{-1} P A P^{-1}+P I P^{-1}$, hence $D_{1} D_{2}=$ $D_{2} D_{1}+I$. But diagonal matrices commute, so we subtract $D_{1} D_{2}=D_{2} D_{1}$ from both sides to get $0=I$, a contradiction.
The remaining problems all concern the matrix $A=\left(\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & -1 \\ 2 & 2 & 4\end{array}\right)$.
2. Find all eigenvalues of A; give a basis for each eigenspace. HINT: each column sums to 2 .

The hint tells us that $\lambda=2$ is one eigenvalue. The determinant is 8 , the trace is 6 , hence the other eigenvalues multiply to $4(=8 / 2)$ and add to $4(=6-2)$; we conclude that $\lambda=2$ is the only eigenvalue, with (algebraic) multiplicity 3 . We calculate $A-2 I=B=\left(\begin{array}{rrr}-1 & -1 & -1 \\ -1 & -1 & -1 \\ 2 & 2 & 2\end{array}\right)$. This has row canonical form $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0\end{array}\right)$. Therefore x_{2}, x_{3} are free (2-dimensional eigenspace), and $x_{1}=-x_{2}-x_{3}$. One basis for E_{2} is $\left\{(-1,1,0)^{T},(-1,0,1)^{T}\right\}$.
3. Find a basis for \mathbb{R}^{3} consisting of "power vectors" (generalized eigenvectors) of A.

Since 2 is the only eigenvalue, we will expect \tilde{E}_{2} to be 3 -dimensional. We already have 2 eigenvectors, in the nullspace of B^{1} (hence of first order). $B^{2}=0$, hence we can choose any other vector to fill out \tilde{E}_{2}, so long as it's independent with the first two we got before. This will be a generalized eigenvector of second order. For example $\left\{(-1,1,0)^{T},(-1,0,1)^{T},(1,0,0)^{T}\right\}$ is such a basis.
4. Write A in Jordan canonical form. You need not find the corresponding change-of-basis matrix.

Since $m_{a}(2)=3$, the JCF will have 2 in all three diagonal entries. Since $m_{g}(2)=2$, there will be two blocks. Hence there are two possible answers: $\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ or $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$.
5. Evaluate $e^{A t} \bar{u}$, for each \bar{u} in the basis you gave in question 3. above.

We have $e^{A t}=e^{2 I t+B t}=e^{2 t} e^{B t}=e^{2 t}\left(I+B t+(B t)^{2} / 2+(B t)^{3} / 6+\cdots\right)$. But already $B^{2}=0$, so really $e^{A t}=e^{2 t}(I+B t)$. When applying this to the three vectors, note that the first two are in the nullspace of B, so we need only calculate $e^{2 t}$ instead (i.e. $e^{2 t}(I+B t) u=e^{2 t} I u+e^{2 t} t B u=e^{2 t} u+0=e^{2 t} u$).
$e^{A t}(-1,1,0)^{T}=e^{2 t}(-1,1,0)^{T}=\left(-e^{2 t}, e^{2 t}, 0\right)^{T}$.
$e^{A t}(-1,0,1)^{T}=e^{2 t}(-1,0,1)^{T}=\left(-e^{2 t}, 0, e^{2 t}\right)^{T}$.
$e^{A t}(1,0,0)^{T}=e^{2 t}(I+B t)(1,0,0)^{T}=e^{2 t}\left(\begin{array}{ccc}1-t & -t & -t \\ -t & -t & -t \\ 2 t & 2 t & 1+2 t\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}e^{2 t}(1-t) \\ e^{2 t}(-t) \\ e^{2 t}(2 t)\end{array}\right)$.

